Search results for "Bond theory"

showing 10 items of 18 documents

Gold(i) sulfide: Unusual bonding and an unexpected computational challenge in a simple solid

2019

We report the experimental high-pressure crystal structure and equation of state of gold(I) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of cov…

Bulk modulusMaterials science010405 organic chemistryGold(I) sulfideIonic bondingGeneral ChemistryCubic crystal system010402 general chemistry01 natural sciences0104 chemical sciencesElectronegativitychemistry.chemical_compoundChemical bondchemistryChemical physicsCovalent bondValence bond theory
researchProduct

The prediction of molecular equilibrium structures by the standard electronic wave functions

1997

A systematic investigation has been carried out of the accuracy of molecular equilibrium structures of 19 small closed-shell molecules containing first-row atoms as predicted by the following standard electronic ab initio models: Hartree–Fock (HF) theory, Mo/ller–Plesset theory to second, third, and fourth orders (MP2, MP3, and MP4), coupled-cluster singles and doubles (CCSD) theory; CCSD theory with perturbational triples corrections [CCSD(T)], and the configuration-interaction singles and doubles (CISD) model. For all models, calculations were carried out using the correlation-consistent polarized valence double-zeta (cc-pVDZ) basis, the correlation-consistent polarized valence triple-zet…

Modern valence bond theoryValence (chemistry)ChemistryAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersAb initioGeneral Physics and AstronomyMoleculePhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsWave functionBasis set
researchProduct

Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems …

2015

Frustration in quantum many body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, to the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior …

High Energy Physics - Theoryfrustrationmedia_common.quotation_subjectFOS: Physical sciencesFrustrationQuantum entanglement01 natural sciences010305 fluids & plasmassymbols.namesakeQuantum mechanics0103 physical sciences010306 general physicsQuantumCondensed Matter - Statistical MechanicsMathematical Physicsmedia_commonPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)ObservableMathematical Physics (math-ph)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsHigh Energy Physics - Theory (hep-th)Bounded functionsymbolsValence bond theoryCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Ground state
researchProduct

Minimum instances of topological matter in an optical plaquette

2007

We propose experimental schemes to create and probe minimum forms of different topologically ordered states in a plaquette of an optical lattice: Resonating Valence Bond, Laughlin and string-net condensed states. We show how to create anyonic excitations on top of these liquids and detect their fractional statistics. In addition, we propose a way to design a plaquette ring-exchange interaction, the building block Hamiltonian of a lattice topological theory. Our preparation and detection schemes combine different techniques already demonstrated in experiments with atoms in optical superlattices.

PhysicsCondensed Matter::Quantum GasesOptical latticeValence (chemistry)High Energy Physics::LatticeFOS: Physical sciencesTopological quantum computerAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed Mattersymbols.namesakeLattice (order)Quantum mechanicssymbolsValence bond theoryMatter waveHamiltonian (quantum mechanics)ExcitationOther Condensed Matter (cond-mat.other)
researchProduct

Calculation of the conformational dependence of valence and Rydberg states in n-tetrasilane

1999

Abstract Previous CIS/6-31G ∗∗ and CASSCF/6-31G ∗ calculations of valence excited states of n -tetrasilane accounted qualitatively for the observed conformational dependence of condensed-phase UV absorption spectra. In an attempt to understand this result, we have performed CIS calculations with a larger basis set (MC-311G(2d) on Si, 6-311G on H, and 2s, 2p, and 2d diffuse orbitals at molecular center of mass). The first two excited states are of valence character at all dihedral angles if the molecule is isolated. When it is embedded in a rare gas cluster, the lowest four states are of valence character, and the results are nearly identical with those obtained without diffuse orbitals in t…

education.field_of_studyValence (chemistry)PopulationGeneral Physics and Astronomychemistry.chemical_compoundModern valence bond theorysymbols.namesakechemistryExcited stateRydberg formulasymbolsPhysical and Theoretical ChemistryAtomic physicseducationGeneralized valence bondDisileneBasis setChemical Physics
researchProduct

Electronic Structures and Spectroscopic Properties of 6π-Electron Ring Molecules and Ions E2N2 and E42+ (E = S, Se, Te)

2004

The electronic structures and molecular properties of square-planar 6π-electron ring molecules and ions E2N2 and E42+ (E = S, Se, Te) were studied using various ab initio methods and density functionals. All species were found to contain singlet diradical character in their electronic structures. Detailed analysis of the CAS wave function of S2N2 in terms of different valence bond structures gives the largest weight for a Lewis-type singlet diradical VB structure in which the two unpaired electrons reside on nitrogen atoms, though the relative importance of the different VB structures is highly dependent on the level of theory. The diradical character in both E2N2 and E42+ was found to incr…

Chemical speciesCrystallographyCoupled clusterUnpaired electronComputational chemistryChemistryDiradicalAb initioMoleculeValence bond theorySinglet statePhysical and Theoretical ChemistryThe Journal of Physical Chemistry A
researchProduct

Ab initio simulations on N and S co-doped titania nanotubes for photocatalytic applications

2015

In this paper we present the results of quantum chemical modeling for energetically stable anatase (001) TiO2 nanotubes, undoped, doped, and codoped with N and S atoms. We calculate the electronic structure of one-dimensional (1D) nanotubes and zero-dimensional (0D) atomic fragments cut out from these nanotubes, employing hybrid density functional theory with a partial incorporation of an exact, nonlocal Hartree–Fock exchange within the formalism of the linear combination of atomic orbitals, as implemented in both CRYSTAL and NWChem total energy codes. Structural optimization of 1D nanotubes has been performed using CRYSTAL09 code, while the cut-out 0D fragments have been modelled using the…

NanotubeMaterials scienceAb initioChemieNanotechnologyElectronic structureCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsOptical properties of carbon nanotubesCondensed Matter::Materials ScienceLinear combination of atomic orbitalsValence bond theoryDensity functional theoryElectronic band structureMathematical Physics
researchProduct

Spin-$\frac{1}{2}$ Heisenberg antiferromagnet on the star lattice: Competing valence-bond-solid phases studied by means of tensor networks

2018

Using the infinite Projected Entangled Pair States (iPEPS) algorithm, we study the ground-state properties of the spin-$1/2$ quantum Heisenberg antiferromagnet on the star lattice in the thermodynamic limit. By analyzing the ground-state energy of the two inequivalent bonds of the lattice in different unit-cell structures, we identify two competing Valence-Bond-Solid (VBS) phases for different antiferromagnetic Heisenberg exchange couplings. More precisely, we observe (i) a VBS state which respects the full symmetries of the Hamiltonian, and (ii) a resonating VBS state which, in contrast to previous predictions, has a six-site unit-cell order and breaks $C_3$ symmetry. We also studied the g…

Quantum phase transitionPhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsLattice (order)0103 physical sciencesThermodynamic limitAntiferromagnetismTopological orderValence bond theoryCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin (physics)Quantum
researchProduct

Linear and nonlinear optical properties of some organoxenon derivatives

2007

We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2…

Optics and PhotonicsNonlinear opticsXenonChemical PhenomenaCoupled cluster calculations ; Nonlinear optics ; Optical properties ; Perturbation theory ; SCF calculations ; VB calculationsGeneral Physics and AstronomyElectronic structurePerturbation theoryMatrix (mathematics)Coupled cluster calculationsComputer SimulationComplete active spacePhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Local fieldOptical propertiesChemistryChemistry PhysicalNonlinear opticsUNESCO::FÍSICA::Química físicaNonlinear systemVB calculationsModels ChemicalNonlinear DynamicsSCF calculationsValence bond theoryAtomic physics
researchProduct

Orbital dimerization inNaTiSi2O6:An orbital analogue of the spin-Peierls phase transition

2004

We measure the Raman scattering spectra of NaTiSi2O6, analyze the vibrational properties, and study the origin of the phase transition in this compound. In this quasi-one-dimensional S = 1/2 system we observe anomalous high-temperature phonon broadenings, and large changes of the phonon energies and line-widths across the phase transition temperature of 210 K. These results, combined with theoretical considerations, indicate that the phonon anomalies originate from an orbital order-disorder type of phase transition. We find that the high temperature dynamical Jahn-Teller phase of NaTiSi2O6 exhibits a spontaneous breaking of translational symmetry into a dimerized, Jahn-Teller distorted, orb…

Quantum phase transitionPhysicsPhase transitionCondensed matter physicsPhononFerroicsCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeNon-bonding orbitalsymbolsCondensed Matter::Strongly Correlated ElectronsValence bond theoryStrongly correlated materialRaman spectroscopyPhysical Review B
researchProduct